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The so lu t ion  of  non l inea r  c o n s t r a i n t  p r o b l e m s  in the t h e o r y  of he t e rogeneous  igni t ion and 
hea t  conduct ion  r e d u c e s  to the so lu t ion  of a s y s t e m  of non l inea r  V o l t e r r a  in teg ra l  equat ions ,  
fol lowed by a n u m e r i c a l  eva lua t ion  the a l g o r i t h m  fo r  which  is based  on the use of s u m s  
analogous  to Darbu  sums .  

The idea of successively constructing upper and lower approximating functions for an effective solu- 
tion of differential equations was first proposed by Chaplygin [i]. Recently the method of bilateral ap- 
proximations for solving differential equations has been developed further [2, 3]. In [3, 4] is given a method 
of successively constructing "upper" and "lower" approximations for solving one particular nonlinear con- 
straint problem. We propose here an algorithm for constructing "upper" and ~lower" approximations 
which is based on the use of sums analogous to Darbu sums. 

1. Le t  at  the ins tan t  t = 0 the semi inf in i te  space  (x < 0) fi l led with a hot combus t ib le  adjoin the s e m i -  
infinite space  (x > 0) fi l led with an oxid izer .  The ini t ia l  t e m p e r a t u r e  of the combus t ib le  is T~ and that  of 
the ox id ize r  is T ~ A cons tan t  t h e r m a l  flux e m a n a t e s  f r o m  the r eg ion  x > 0 to the i n t e r f ace  be tween  the 
two media .  We a s s u m e  that  the t h e r m o p h y s i c a l  p r o p e r t i e s  a re  constant ,  that  t h e ' r e a c t i n g  gas is an e f -  
f ic ient  b ina ry  mix tu re ,  and that  at the i n t e r f ace  there  o c c u r s  a he t e rogeneous  c h e m i c a l  r e a c t i o n  whose  r a t e  
fol lows the A r r h e n i u s  law. 

Our p r o b l e m  will  be to d e t e r m i n e  the igni t ion t ime as a funct ion of the ini t ia l  s ta te  and of the t h e r m o -  
kinet ic  p r o p e r t i e s  of the r eac t i ng  sy s t e m .  

The m a t h e m a t i c a l  p rob l e m  he re  r e d u c e s  to solving the equat ions  of heat  conduct ion  for  the c o m -  
bust ible  and fo r  the ox id izer ,  and the equat ion  of d i f fus ion f o r  the ox id ize r  - all e x p r e s s e d  in d i m e n s i o n -  
less  f o r m  as 

001 0201 
- -  , y > O ,  (1) 

O~ Og 2 

00--A-2 = x-A-2 0202 , g < 0 ,  (2) 
O~ • O f  

Oc 02c 
--  L - - ,  g > O  (3) 

a~ oy 2 

with the initial and the boundary conditions 

o~/~=_= = o~J~=o = o~, (4)  

02J = ( 002 0 0 1 )  00 
!y=o 0~. Iv=o' o~ = a + c~ exp 
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With the in t roduc t ion  of d i m e n s i o n l e s s  v a r i a b l e s ,  the in i t ia l  t e m p e r a t u r e  at  the i n t e r f a c e  T .  has  
been  s e l ec t ed  as the c h a r a c t e r i s t i c  t e m p e r a t u r e  and, by v i r tue  of this choice ,  0~ = -  0 ~ / K e .  

We note that  t he re  a l so  o c c u r s  a hea t  t r a n s f e r  by di f fus ion of the r e a c t i o n  p roduc t s  and the ox id izer .  
Acco rd ing  to the e s t i m a t e s  in [5], however ,  this hea t  t r a n s f e r  i s  neg l ig ib ly  s m a l l e r  than the hea t  t r a n s f e r  
by conduct ion.  

2. Applying the Lap l ace  t r a n s f o r m a t i o n  [6] to the c o n s t r a i n t  p r o b l e m  (1)-(6), we obtain  the t r a n s -  
f o r m s  Ol(P, Y), 0-2(P, Y), c(p,  y). I n a s m u c h  as  igni t ion ac tua l ly  o c c u r s  at  the i n t e r f a c e  be tween  the two 
media ,  so  f o r  an ana lys i s  of the igni t ion  m e c h a n i s m  i t  is  suf f ic ien t  to know the t e m p e r a t u r e  00(T) and the 
concen t r a t i on  of the ac t ive  gas  componen t  c0(r) a t  this  i n t e r f a c e .  

With the aid of the convolut ion  t h e o r e m  [6], we obta in  - as  the au thor s  of [7] did - a s y s t e m  of non-  
l i nea r  V o l t e r r a  i n t eg ra l  equat ions  f o r  00 and Co: 

c~ (t) exp 0 o (t) 
2 [ a V - ~ . +  1 j l + ~ 0 o ( t )  

0 
Oo (t) 

c~ (t) exp 
a 1 + ~0o (t) dr. 

co = 1 V Y  V C:-t 
0 

dr], (7) 

(s) 

Having found 00 and Co, one can  d e t e r m i n e  0 (y, r) and c(y, "r). F o r  this we need the s o u r c e  in t ens i ty  
c n e x p [ 0 / ( 1  +/300)], w i t h  which 0 (y, ~') and c(y, ~') a r e  obtained by we l l -known  f o r m u l a s  [6]. 

It  fol lows f r o m  Eq. (7) and (8) that  

Co(~)= l - - a [ ( 1  + K ~ ) 0 o ( ~ ) - - 2 a V - ~ J .  

S y s t e m  (7)-(8) then r e d u c e s  to the so lu t ion  of one non l inea r  V o i t e r r a  equation:  

(9) 

Oo = V ~  (1 + K~) T V ~ -  t ' 
0 

[ /-]} { oo 
qO(0o, t) = 1 - - a  (1 + K ~ ) 0  o - 2 c ~  @ nexp 1 +B0o 

(10) 

Two kinds of g r a p h s  of funct ion 0)(00) a r e  shown in Fig .  1 f o r  a = 0. It i s  e a s y  to see  that  this func -  
t ion p a s s e s  t h rough  a m a x i m u m  (curve 1) at 

V 1  -I 4n~ + 4nf~Z 2nf3 -- 1 
0 o = 0 "  = a(1 +K~)  2n~2 (11) 

The m a x i m u m  q) wil l  occu r  at 00 = 0, if  

1 
. . . .  02) 

a = a 0 = n(1 -~K~) 

When  a > a0, then the cu rve  ~o(00) has  no m a x i m u m  (curve 2). A s i m i l a r  s i tua t ion  p r e v a i l s  when a ~ 0. 

Func t ion  ~ can  be a p p r o x i m a t e d  by two s t ep  func t ions ,  one e v e r y w h e r e  l a r g e r  than q~ f o r  00 > 0 and 
one e v e r y w h e r e  s m a l l e r  than (p. F o r  the d e t e r m i n a t i o n  of uppe r  and lower  a p p r o x i m a t i o n s ,  we then have 

m 

m 

0~rn -- V rf (12-27 /(f,) { (:Z ]/~m @ Ei=I [(V~-m- Zi-1-- V ~ T - - ~  T/ ) q) (Ti-I)]} " (14) 
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Fig .  1. Graphs  of the d i m e n s i o n l e s s  hea t  g e n e r a t i o n  funct ion,  for  K e 

= 1000, n = 1, o~ = 0, fl = 0.03, 0* = 1.33: 1) a = 0.0004; 2) a = 0.0012. 

Fig .  2. Graphs  of uppe r  and lower  a p p r o x i m a t i o n s  to the d i m e n s i o n l e s s  
i n t e r f a c e  t e m p e r a t u r e .  

He re  ~m = m~T with AT denot ing  the t ime  i n t e r v a l  held c o n s t a n t  du r ing  the computa t ion ,  Om = 0-0(Tm) and 

m = O o(rm)" 

In this way, on each t ime  i n t e r v a l  we have a t r a n s c e n d e n t a l  equa t ion  for  ~m and the r e c u r r e n c e  f o r -  

m u l a  (14) for  _0 m. 

Re l a t i ons  (13) and (14) a r e  va l id  only un t i l  t ime  v 0 at  which func t ion  q~ has r eached  i t s  m a x i m u m ,  
whi le  l a t e r  at ~ > v 0 0-m is found by (14) and ~ m  is found by (13). 

The t r a n s c e n d e n t a l  equa t ion  fo r  Om 

0-m = f (Ore) (15) 

and [f'(Om)I < k < 1 was solved by straight iterations, with a known 0-m-i taken as the initial approxima- 
tion. This method fails when I ft(0-m)[ _> k [8], and the transcendental equation (13) was in this case solved 
by the elementary method of bisecting the interval. In both cases k was made equal to 0.6. 

Ignition is considered to occur at the instant of time which corresponds to the inflection point of 
curve ~0 = 00(~') �9 As is well known, at that instant a heterogeneous chemical reaction passes from the 
kinetic (low-temperature) mode to the diffusion (high-temperature) mode and this determines the condition 
for ignitability [9]: 

d20~ . { = 0, (16) 
dT2 iv=v, 

where  v ,  deno tes  the induc t ion  or  heatup t ime .  

N u m e r i c a l  computa t ions  have shown that  i a f l ec t ion  of the curve  depends  on the magn i tude  of p a r a m -  
e t e r  a. T h e r e  is  an i n f l ec t i on  when a < a ,  and the re  i s  none when a > a , ,  a .  being s o m e  c r i t i c a l  va lue  of 
p a r a m e t e r  a.  

In Fig .  2 a re  shown O0(T) and 00(7) c u r v e s  for  a < a ,  and a > a . ,  with Ke = 1000, ~ = 0, fl = 0.03, 
n = 1, and a ,  = 0.00032. C u r v e s  1 a~d 2 r e p r e s e n t ,  r e s p e c t i v e l y ,  the upper  and the lower  a p p r o x i m a t i o n s  to 
the exac t  cu rve  00(~-) for  a = 0 < a . .  It i s  ev iden t  he re  that  the d i s t ance  be tween  the c u r v e s  i n c r e a s e s  with 
t i m e  and b e c o m e s  m a x i m u m  af te r  the longes t  t ime  al lowed for  the computa t ion  p r o c e s s .  Curves  3 and 4 
r e p r e s e n t ,  r e s p e c t i v e l y ,  the uppe r  and the lower  a p p r o x i m a t i o n s  to the exac t  curve  00(T) for  a = 0.0004 
> a , .  T h e r e  a re  no in f l ec t ion  points  he re .  At ~ ~ ~o both c u r v e s  approach  a s y m p t o t i c a l l y  a r a t h e r  low 
ho r i zon t a l  l ine ,  whe reupon  the d i s t a n c e  be tween  them r e m a i n s  a l m o s t  cons tan t .  

Thus ,  the abso lu te  e r r o r  in  the d e t e r m i n a t i o n  of 0 m does not  exceed - 0 m - ~ m  on each  step.  As to 
the m a t h e m a t i c a l  c o n v e r g e n c e  of this  method,  i t  i s  d e t e r m i n e d  by the c onve r ge nc e  of upper  and lower  Darbu  
s u m s ,  whose ana logs  a r e  the s u m s  in  (13) and (14), to the exac t  value of the i n t e g r a l  at AT ~ 0. 

In Fig .  3 a re  shown 0-0(1") and 60(T ) cu rves  for  a -- 0.0004, with K e = 1000, ~ = 0, fl = 0.03, n = 1, 
and AT = 104 or  5 �9 104 (curves  1, 1'  ~nd 2, 2 ' ,  r e spec t i ve ly ) .  It i s  ev iden t  he re  that,  as AT is  d e c r e a s e d ,  
both b r a n c h e s  come c l o s e r ,  i . e . ,  the abso lu te  e r r o r  of the method b e c o m e s  s m a l l e r .  
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After  the in terval  A'r for  a des i red  accu racy  has been es tabl i shed by the method of b i la te ra l  approx i -  
mat ions ,  i t  now becomes  worthwhile for  machine t ime economy to use the r e c u r r e n c e  fo rmula  (14). 

We ought to note that such problems can also be solved by the use of a va r iab le  AT in terva l  which 
will ensure  the required absolute accu racy  of the 00(~) determinat ion.  

3. The method of b i l a te ra l  approximat ions  can also be used for  solving another  and more  difficult 
p rob lem concerning heterogeneous  ignition, namely  where a layer  of solid fuel has a finite thickness [9]. 

The mathemat ics  of the p rob lem reduces  to a solution of the following equations in d imensionless  
form:  

O0~ _ 0~0' , y - >  1, (17) 
O ~  Oy ~ 

O0~ 0202 0 <~y < I, (18) 

Oc . = L 02---~e y> 1 ' (19) 
o~ | ' 

with the init ial  conditions 

O~l~-=o o~{F=~ ~176 o~1~-=o o~l~-_o o~ : : : = 21 

_ - - m  _ = - - 5  a + c ~ e x p  

(2o) 

(21) 

Oc ~-=, T6c~ exp O~ (22) 
clF=o=CIF__ ~ = 1, ~ = - ~  1 +130o 

This cons t ra in t  problem,  
tions for  both the t empe ra tu r e  and the concentrat ion of the gaseous reagent  at the in terface:  

like the preceding one, reduces  to two nonlinear  Vo l t e r r a  in tegral  equa-  

Oo fo + 

0 o ,c exp [ (. 
5 ~' 1 + [gO o 1 -F (h - -  1) hi-~ exp __- dt, (23) 

V ~ ( I + K ~ )  J ~ t - - t  . I x 
0 ]=1 

00 
F cgexp I +f}00 dr, h =  1 - - K ~ ,  (24) 

c o = i ] / - n  . Vx-t 1 + K ~  
0 

(Y' " 
2~6 x h -  1 exp - -  

f~ 1+~(, W t- V~- i= ,  

The proposed r ep l acemen t  of source  t e r m s  by step functions for  the de te rmina t ion  of upper  and 
lower  approximat ions  yields the following relat ions:  

m 
_ _  ~ ~ , ~ -  ~ _ ~ -  V~- ~. 

-J~ (h--  [ ) V ]h]-I [ exp  ( - - X j , k _ l )  @xp ( - - X j ,  h) 
_ ~ Vx,,~_l V xj,~ ]=t 

(2s) 
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Fig. 3. Graphs of upper and lower approximations to the func-  
tion 000"), with different intervals  AT of numerical  integration. 

Fig. 4. Graphs of the dimensionless interface tempera ture  00(r), 
in the ignition mode (1, 2) and in the nonignition mode (3, 4). 

+ (h--~) 

tr~ 
(P (Ooh' C__Oh) ~ "~rrt - -  T1r - -  V ~rtl, - -  "C~, o o , ~ = f _ o , , , +  V ~ ( I + K , )  k=~  - 

]hi-~_l I ex p(-xJ ,h_ 0 exp(--xj,h) -t-]/rE (cI)(V x~,h_ , ) - @ ( 1 / x ~ , h ) ) ] j } ,  
]=1 W 7 V~(,i,k--'l V Xj,k 

2a6 
- ~ (Oo,. Co,) (Y~o .  3,_1 - Co~= 1 V ~-  ~k=t 

2a8 E - ~ - - - 

77&-i- 

qo(Oo, co) =c~exp O~ , 0o. ~ - - 0  o(t~), con =C  o(t~), 
1 -~ 130 o 

? ? 
xj ,~_~ t~ ( i ,~ - u  x i '  ~ t-~ (~.~ - -  ~,~) 

(26) 

(27) 

(28) 

The sequence of computations: in the f i r s t  step one computes 001 and c0t , then 00i and c0t , etc. In 
each step it is neces sa ry  to solve a transcendental  equation for 0-0m and the~ to apply r ecu r r ence  formulas  

to O0m , C0m , c0 m. 

Since for the gaseous and the solid phase K s >> 1 and h < 1, hence the expressions fo r f0m and f0m 
contain alternating se r ies .  For  ~ = 0 we have f0 < 0. In view of this, the se r ies  must  be cut off after-a 
negative t e rm when an upper approximation is computed and after the following positive t e rm when a lower 
approximation is computed. The same procedure  applies to the computation of sums on the right-hand sides 
of express ions  (25)and (26). 

After the optimum Az interval  has been selected by way of bi lateral  approximations,  the bulk of the 
computations can be per formed with the use of the following r ecu r rence  formulas:  

2 8  
Oo~ = fo.~ + V~(~ + G)  t ~(oo,,_~, Co~_O [V~-~ - ~_~ 

- V ~  - ~ ~ (h - a) ~ ] } ,  (29) 

m 

= 1 (Oo , - - t. ( 3 o 1  

k=l 
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The solution of this problem by the described method has made it possible to establish a new limit of 
heterogeneous ignition 5,. It appears that the 000- ) curves have an inflection when 6 > 6, but not when 
5 < 5,. Therefore ,  a low constant temperature  at y = 0 impedes and in some cases prevents ignition. This 
is evident in Fig. 4, where a set  of curves is shown for 5 = 0.2, 0.4, 0.6, and 0.8 with Ke = 40, a = 0, fl 
= 0.03, p = 0.001, n = 1, and 0 ~ = 0. It can be seen here  that curves  1 and 2 correspond to ignition while 
curves 3 and 4 correspond to nonignition. 

In determining 00, the AT interval  was selected so as to hold the absolute e r r o r  within 5%. 

It must  be noted that the method of bilateral  approximations is applicable also to other problems in 
the theory of heat  conduction with nonlinear boundary conditions as, for  example, the problem of heat t r ans -  
fer  f rom a gray  gas to a solid body, the problem of heat t ransfer  with a moving phase- t ransformat ion  front, 
or  the problem of heterogeneous combustion. 

X 

y = x / r , ,  y = x / r  0 
0 = ( T - T . ) E / R T 2 ,  
T 
T ,  

= t / t , ,  u = t / t  o 

t 
t ,  = r2,cipl/Xi, 
to = ~oclPl/X2 n 
r ,  = (RT2kl/C O Eqk0) 
�9 exp (E /RT, )  

r 0 

c i 
a = (Q/qk0C n) exp (E 
/RT~) 
Q 

Pi 
h 
q 

k0 
E 
R 

Co 
C 
c = C / C  0 
K~ = ~/kzp2c2/klplcl 
fl - R T . / E  

~<i = ki/PiCi 
n 

L = D/~ i 

Y = PlclRT2,/q E 
a = y / q - L ;  

6 (cnEqkoro/RT2, kl) 

�9 e x p -  ( E / R T , )  

,~*(x) = 1 - ~ ( x ) .  

N O T A T I O N  

is the space coordinate; 
are  the dimensionless coordinates;  
is the dimensionless temperature ;  
is the absolute temperature ;  
is the charac te r i s t ic  temperature:  initial interface temperature ;  
are  the dimensionless time coordinates;  
is the rea l - t ime coordinate; 

are  the time scale factors ;  

is the length scale;  
is the thickness of combustible layer;  
is the specific heat of medium i; 

1S 

IS 

IS 

IS 

IS 

IS 

IS 

IS 

IS 

IS 

IS 

i s  

i s  

i s  

the dimensionless thermal  flux; 
the thermal  flux; 
the density of medium i; 
the thermal  conductivity of medium i; 
the thermal  effect of reaction; 
the preexponent; 
the activation energy of heterogeneous reaction; 
the universal  gas constant; 
the initial concentration; 
the current  concentration; 
the relative concentrat ion at any instant of time; 
the re fe r red  coefficient of thermal  activity; 
the dimensionless parameter ;  
the thermal diffusivity of medium i; 

is the order  of reaction; 
is the Lewi s -Semenov  number; 
is the dimensionless parameter ;  

is the dimensionless parameter  character iz ing the thickness of the combustible 

layer;  
is the e r r o r  function; 

S u b s c r i p t s  

i = I ,  2; 

1 
2 

denotes the gaseous phase; 
denotes the solid phase; 
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dash above the Z sign indicates an overes t imated  sum; 
dash below the ~ sign indicates an underes t imated  sum. 
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