METHOD OF BILATERAL APPROXIMATIONS IN THE
SOLUTION OF CERTAIN NONLINEAR CONSTRAINT PROBLEMS

A, M. Grishin and N, A, Ignatenko UDC 536.46

The solution of nonlinear constraint problems in the theory of heterogeneous ignition and
heat conduction reduces to the solution of a system of nonlinear Volterra integral equations,
followed by a numerical evaluation the algorithm for which is based on the use of sums
analogous to Darbu sums,

The idea of successively constructing upper and lower approximating functions for an effective solu~
tion of differential equations was first proposed by Chaplygin [1]. Recently the method of bilateral ap-
proximations for solving differential equations has been developed further [2, 3]. In [3, 4] is given a method
of successively constructing "upper" and "lower" approximations for solving one particular nonlinear con-
straint problem, We propose here an algorithm for constructing "upper" and "lower" approximations
which is based on the use of sums analogous to Darbu sums.

1. Let at the instant t = 0 the semiinfinite space (x < 0) filled with a hot combustible adjoin the semi-
infinite space (x > 0) filled with an oxidizer. The initial temperature of the combustible is Tg and that of
the oxidizer is T{. A constant thermal flux emanates from the region x > 0 to the interface between the
two media. We assume that the thermophysical properties are constant, that the reacting gas is an ef-
ficient binary mixture, and that at the interface there occurs a heterogeneous chemical reaction whose rate
follows the Arrhenius law.

Our problem will be to determine the ignition time as a function of the initial state and of the thermo-
kinetic properties of the reacting system.,

The mathematical problem here reduces to solving the equations of heat conduction for the com-
bustible and for the oxidizer, and the equation of diffusion for the oxidizer — all expressed in dimension-
less form as
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With the introduction of dimensionless variables, the initial temperature at the interface T, has
been selected as the characteristic temperature and, by virtue of this choice, @g = ef/Ka.

We note that there also occurs a heat transfer by diffusion of the reaction products and the oxidizer.
According to the estimates in [5], however, this heat transfer is negligibly smaller than the heat transfer
by conduction.

2. Applying the Laplace transformation [6] to the constraint problem (1)-(6), we obtain the trans-
forms 9;(p, ¥)s (0, ¥), C€(p, y). Inasmuch as ignition actually occurs at the interface between the two
media, so for an analysis of the ignition mechanism it is sufficient to know the temperature ¢,(r) and the
concentration of the active gas component cy(r) at this interface.

With the aid of the convolution theorem [6], we obtain — as the authors of [7] did — a system of non-
linear Volterra integral equations for ¢, and ¢
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Having found 4, and ¢;, one can determine ¢ (y, ) and c(y, 7). Fbr this we need the source intensity
cllexp[0/ (1 + B6,)], with which 6 (y, 7) and c(y, 7) are obtained by well-known formulas [6].

It follows from Eq. (7) and (8) that

6 (1) = 1 -—a'[(l +K,) 8, (1) — 2 ‘/g] . (9)

System (7)-(8) then reduces to the solution of one nonlinear Volterra equation:
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Two kinds of graphs of function ¢(gy) are shown in Fig. 1 for ¢ = 0. If is easy to see that this func-
tion passes through a maximum (curve 1) at
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The maximum ¢ will occur at gy = 0, if
I s
n(l+K,)

a=a,= (12)

When a > g, then the curve ¢(9;) has no maximum (curve 2). A similar situation prevails when o = 0.

Function ¢ can be approximated by two step functions, one everywhere larger than ¢ for g, > 0 and
one everywhere smaller than ¢. For the determination of upper and lower approximations, we then have
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Fig. 1. Graphs of the dimensioniess heat generation function, for K¢
=1000, n=1, @ =0, 8 =0.03, 6™ =1.33: 1) @ = 0.0004; 2) a = 0.0012,

Fig. 2. Graphs of upper and lower approximations to the dimensionless
interface temperature,

Here r,, = mAr with A7 denoting the time interval held constant during the computation, 5m = 0, (Ty,) and
Om = 0p{Tm)-

In this way, on each time interval we have a transcendental equation for 5m and the recurrence for-
mula (14) for op,.

Relations (13) and (14) are valid only until time 7 at which function ¢ has reached its maximum,
while later at 7 > 7 8,y is found by (14) and ¢, is found by (13).

The transcendental equation for g,
8, =1, (15)
and [£'(6)| < k < 1 was solved by straight iterations, with a known gy, _; taken as the initial approxima-

tion, This method fails when | f'(8,,)| = k [8], and the transcendenta] equation (13) was in this case solved
by the elementary method of bisecting the interval. In both cases k was made equal to 06.

Ignition is considered to occur at the instant of time which corresponds to the inflection point of
curve @g = 94(7). As is well known, at that instant a heterogeneous chemical reaction passes from the
kinetic (low-temperature) mode to the diffusion (high-temperature) mode and this determines the condition
for ignitability [9]: ‘

&8,

2
dt T=T,

—0 (16)

where 7, denotes the induction or heatup time.

Numerical computations have shown that inflection of the curve depends on the magnitude of param-
eter ¢, There is an inflection when @ < a, and there is none when ¢ > a,, a, being some critical value of
parameter a.

In Fig. 2 are shown gy(r) and 9y(7) curves for a < a, and a > a,, with K¢ =1000, @ =0, 8 = 0.03,
n =1, and g, = 0.00032, Curves 1 and 2 represent, respectively, the upper and the lower approximations to
the exact curve 9y(r) fora =0 < a,. Itis evident here that the distance between the curves increases with
time and becomes maximum after the longest time allowed for the computation process, Curves 3 and 4
represent, respectively, the upper and the lower approximations to the exact curve g,(r) for g = 0.0004
> a4. There are no inflection points here. At v — « both curves approach asymptotically a rather low
horizontal line, whereupon the distance between them remains almost constant,

Thus, the absolute error in the determination of ¢y, does not exceed §,,— 6y, on each step. As to
the mathematical convergence of this method, it is determined by the convergence of upper and lower Darbu
sums, whose analogs are the sums in (13) and (14), to the exact value of the integral at A7 — 0,

In Fig. 3 are shown 0,(r) and Go(7) curves for g = 0.0004, with K =1000, o =0, 8 =0.03, n =1,
and AT =104 or 5-10* (curves 1, 1' and 2, 2!, respectively). It is evident here that, as A7 is decreased,
both branches come closer, i.e., the absolute error of the method becomes smaller,
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After the interval Ar for a desired accuracy has been established by the method of bilateral approxi-
mations, it now becomes worthwhile for machine time economy to use the recurrence formula (14).

- We ought to note that such problems can also be solved by the use of a variable At interval which
will ensure the required absolute accuracy of the ¢,(r) determination,

3. The method of bilateral approximations can also be used for solving another and more difficult
problem concerning heterogeneous ighition, namely where a layer of solid fuel has a finite thickness [9].

The mathematics of the problem reduces to a solution of the following equations in dimensionless
form:
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This constraint problem, like the preceding one, reduces to two nonlinear Volterra integral equa-
tions for both the temperature and the concentration of the gaseous reagent at the interface:
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The proposed replacement of source terms by step functions for the determination of upper and
lower approximations yields the following relations:
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The sequence of computations: in the first step one computes 0 and Cyy, then gy and ¢, ©tc.
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Fig. 3. Graphs of upper and lower approximations to the func-
tion 9,(r), with different intervals At of numerical integration.

Fig. 4. Graphs of the dimensionless interface temperature 6,(7),

in the ignition mode (1, 2) and in the nonignition mode (3, 4).
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In

each step it is necessary to solve a transcendental equation for 9om and then to apply recurrence formulas

to 0gm, Com» Com-

Since for the gaseous and the solid phase Kg > 1 and h < 1, hence the expressions for fym and fyy,

contain alternating series, For o =0 we have f; < 0.

In view of this, the series must be cut off after a

negative term when an upper approximation is computed and after the following positive term when a lower

approximation is computed. The same procedure applies to the computation of sums on the right-hand sides
of expressions (25)and (26).

After the optimum AT interval has been selected by way of bilateral approximations, the bulk of the
computations can be performed with the use of the following recurrence formulas:
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The solution of this problem by the described method has made it possible to establish a new limit of
heterogeneous ignition ¢,. It appears that the 9,(r) curves have an inflection when é > §, but not when
0 < 64. Therefore, a low constant temperature at y = 0 impedes and in some cases prevents ignition. This
is evident in Fig. 4, where a set of curves is shown for 6 = 0.2, 0.4, 0.6, and 0.8 with Kz =40, o =0, B
=0.03, © =0.001, n=1, and 93 =0, It can be seen here that curves 1 and 2 correspond to ignition while
curves 3 and 4 correspond to nonignition,

In determining 9,, the At interval was selected so as to hold the absolute error within 5%.

It must be noted that the method of bilateral approximations is applicable also to other probiems in
the theory of heat conduction with nonlinear boundary conditions as, for example, the problem of heat trans-
fer from a gray gas to a solid body, the problem of heat transfer with a moving phase-transformation front,
or the problem of heterogeneous combustion.,
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Subscripts

=1, 2;

NOTATION

is the space coordinate;

are the dimensionless coordinates;

is the dimensionless temperature;

is the absolute temperature;

is the characteristic temperature: initial interface temperature;
are the dimensionless time coordinates;

is the real-time coordinate;

are the time scale factors;

is the length scale;
is the thickness of combustible layer;
is the specific heat of medium i;

is the dimensioniess thermal flux;

is the thermal flux;

is the density of medium i;

is the thermal conductivity of medium i;

is the thermal effect of reaction;

is the preexponent;

is the activation energy of heterogeneous reaction;
is the universal gas constant;

is the initial concentration;

is the current concentration;

is the relative concentration at any instant of time;
is the referred coefficient of thermal activity;

is the dimensionless parameter;

is the thermal diffusivity of medium i;

is the order of reaction;
is the Lewis —Semenov number;
is the dimensionless parameter;

is the dimensionless parameter characterizing the thickness of the combustible

layer;
is the error function;

i
1 denotes the gaseous phase;
2 denotes the solid phase;
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dash above the T sign indicates an overestimated sum;
dash below the ¥ sign indicates an underestimated sum.
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